
gNMI
gRPC Network Management Interface

Samuel Ribeiro

Fall 2017 - Faucet Conference

Why gNMI? - And what about Openflow?

CLI is not Programmable.

● lack of transaction management;
● no structured error handling;
● ever changing structure and syntax of

commands;

gNMI vs Openflow

● Openflow -> Forwarding Plane
○ Packet A goes to X

● gNMI -> Platform
○ Configuration
○ Hardware/Software
○ Environmental/Power

gNMI decomposed

● gRPC - transport
○ high performance RPC framework that can run in any environment

● gNMI - action
○ Get/Set/Subscribe/Capabilities (Service definition with a proto file)

● Tree-structured data - properties
○ OpenConfig - YANG data models

gRPC - what is it?

Client -----(HTTP/2)----> Server

 (insert TCP port number here)

The HTTP/2 session can be:

● Authenticated
● Encrypted
● Compressed
● Multiplexing
● Bidirectional

● Client calls procedures in Server;
● Uses Protocol Buffers to serialize data;
● Protocol Buffers - like XML but:

○ 3x-10x smaller
○ faster
○ simpler

www.grpc.io

gRPC - how is it defined?

The set of actions that are allowed between Client and Server is defined by a Service Definition,
which is also a Protocol Buffer:

service Greeter {
 rpc SayHello (HelloRequest) returns (HelloReply);
 rpc ForeverHello (stream HelloRequest) returns (stream HelloReply);
}

message HelloRequest {
 string name = 1;
}

message HelloReply {
 string message = 1;
}

C++
C#
Go

Java
Node.js

Objective-C
PHP

Python
Ruby

gNMI - defined
service gNMI {
 rpc Capabilities(CapabilityRequest) returns (CapabilityResponse);
 rpc Get(GetRequest) returns (GetResponse);
 rpc Set(SetRequest) returns (SetResponse);
 rpc Subscribe(stream SubscribeRequest) returns (stream SubscribeResponse);
}

● Server is named Target.
● Target always authenticates Client. Client ---------> Target
● Client always authenticates Target. User Switch

● Session is always encrypted. Collector Server

OpenConfig
YANG data models

● YANG
○ data modeling language

● OpenConfig - (www.openconfig.net)
○ authoring guidelines for modeling with YANG
○ real use case driven reasoning
○ vendor neutral

<...>
grouping openflow-agent-config {
 description
 "Openflow agent config";

 <...>

 leaf backoff-interval {
 type uint32;
 units seconds;
 description
 "Openflow agent connection backoff interval.";
 }

 leaf inactivity-probe {
 type uint32;
 units seconds;
 description
 "Openflow agent inactivity probe period.";
 }

 <...>
 }
<...>

OpenConfig
data structure

gnmi_get ... \
 -xpath "/system/openflow/agent/state/backoff-interval" \
 -xpath "/system/openflow/agent/state/max-backoff" \
 -xpath "/system/openflow/controllers/*"

module: openconfig-system
 <...>
 +--rw system
 | <...>
 +--rw openflow:openflow
 | <...>
 +--rw openflow:agent
 +--rw openflow:config
 | +--rw openflow:backoff-interval? uint32
 | +--rw openflow:max-backoff? uint32
 | +--rw openflow:inactivity-probe? uint32
 | <...>
 +--ro openflow:state
 +--ro openflow:backoff-interval? uint32
 +--ro openflow:max-backoff? uint32
 +--ro openflow:inactivity-probe? Uint32
 <...>

gNMI SET - (delete, replace & update)
message SetRequest {
 <...>
 repeated Path delete = 2;
 repeated Update replace = 3;
 repeated Update update = 4;
}

● SET is Transactional
● State must not change until all of it is

accepted;

gnmi_set ... \
 -update "/:@set.json"

cat set.json
{
 "system": {
 "openflow": {
 "agent": {
 "config": {
 "inactivity-probe": 15,
 "max-backoff": 12
 }
 }
 }
 }
}

Config (rw) vs State (ro)

● gNMI operations are Transactional.
○ So why Config vs State?

● OpenConfig
○ had to consider asynchronous

systems where configuration
changes to the system may not be
reflected immediately;

● In gNMI:
○ STATE == CONFIG

module: openconfig-system
 | <...>
 +--rw system
 | <...>
 +--rw openflow:openflow
 | <...>
 +--rw openflow:agent
 +--rw openflow:config
 | +--rw openflow:backoff-interval?
 | +--rw openflow:max-backoff?
 | +--rw openflow:inactivity-probe?
 | <...>
 +--ro openflow:state
 +--ro openflow:backoff-interval?
 +--ro openflow:max-backoff?
 +--ro openflow:inactivity-probe?
 <...>

Encoding

gNMI defines:

enum Encoding {
 JSON = 0; <-----(rfc7159)- OKish
 BYTES = 1;
 PROTO = 2;
 ASCII = 3;
 JSON_IETF = 4; <-(rfc7951)- Prefered (made for YANG)
}

Certificates

In gNMI the sessions are authenticated and encrypted.

● Must use Certificates.
● Client authenticates Target (including validating the hostname).
● Target authenticates Client.

 Client <------------------------------> Target
 Client Private Key Target Private Key
 Client certificate (signed by CA) Target certificate (signed by CA)
 CA certificate CA certificate

Credentials

● username/password can be added to the session METADATA
○ HTTP/2
○ Session is encrypted

● Role Based Access Control
○ do we really need it to be done by the platform?

Subscribe - (streaming telemetry)
service gNMI {
 <...>
 rpc Subscribe(stream SubscribeRequest) returns (stream SubscribeResponse);
}

Use the same OpenConfig models to subscribe to paths.

● Subscription modes:
○ STREAM - sends value on change
○ ONCE - closes channel after sending one value
○ POLL - actively polls for the value

Capabilities

● Fetches Target Capabilities

service gNMI {
 rpc Capabilities(CapabilityRequest) returns (CapabilityResponse);
 <...>
}

message CapabilityResponse {
 repeated ModelData supported_models = 1; // Supported schema models.
 repeated Encoding supported_encodings = 2; // Supported encodings.
 string gNMI_version = 3; // Supported gNMI version.
}

Work in Progress

● OpenConfig
○ Openflow model

■ controller to be a name instead of just an IP
■ assign certificates to an Openflow channel

○ MACsec model
○ PoE model

● ...

What configures gNMI?

What needs to be configured?

1. Admin interface IP Address
➢ DHCP

2. Enable service & TCP Port
➢ DHCP Option

3. Certificates
➢ gNOI

✓

✓

!

gNOI - gRPC Network Operations Interface
service CertificateManagement {

 rpc Rotate(stream RotateCertificateRequest) returns (stream RotateCertificateResponse);

 rpc Install(stream InstallCertificateRequest) returns (stream InstallCertificateResponse);

 rpc GetCertificates(GetCertificatesRequest) returns (GetCertificatesResponse);

 rpc RevokeCertificates(RevokeCertificatesRequest) returns (RevokeCertificatesResponse);

 rpc CanGenerateCSR(CanGenerateCSRRequest) returns (CanGenerateCSRResponse);

}

service File {

 <...>

}

service System {

 <...>

 rpc SetPackage(SetPackageRequest) returns (SetPackageResponse) {}

 rpc Reboot(RebootRequest) returns (RebootResponse) {}

}

Platform Provision Process
Factory Defaults

Insecure gNOI service
Certificate Management

Secure services
gNMI & gNOI

DHCP + service port

Certificate Provision

Platform unprovisioned

Platform operational

Provision process
assumes a secure
environment.

What’s Next?

1. Using gNMI to configure an Access Point;

2. gNMI reference implementation;
○ github.com/google/gnxi

3. Docker instance with running example;
○ github.com/faucetsdn/Dockerfile.gnmi

Thank you!

